正弦定理优秀教学设计

时间:2024-08-05 15:54:56
正弦定理优秀教学设计

正弦定理优秀教学设计

通过正弦定理让我们更容易的了解数学,正弦定理的教学内容有哪些呢?以下是小编为大家整理的关于《正弦定理》教学设计,给大家作为参考,欢迎阅读!

一、教学内容分析

本节课是高一数学第五章《三角比》第三单元中正弦定理的第一课时,它既是初中“解直角三角形”内容的直接延拓,也是坐标法等知识在三角形中的具体运用,是生产、生活实际问题的重要工具,正弦定理揭示了任意三角形的边角之间的一种等量关系,它与后面的余弦定理都是解三角形的重要工具。

本节课其主要任务是引入证明正弦定理及正弦定理的基本应用,在课型上属于“定理教学课”。因此,做好“正弦定理”的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,学生通过对定理证明的探究和讨论,体验到数学发现和创造的历程,进而培养学生提出问题、解决问题等研究性学习的能力。

二、学情分析

对高一的学生来说,一方面已经学习了平面几何,解直角三角形,任意角的三角比等知识,具有一定观察分析、解决问题的能力;但另一方面对新旧知识间的联系、理解、应用往往会出现思维障碍,思维灵活性、深刻性受到制约。根据以上特点,教师恰当引导,提高学生学习主动性,注意前后知识间的联系,引导学生直接参与分析问题、解决问题。

三、设计思想:

培养学生学会学习、学会探究是全面发展学生能力的重要方面,也是高中新课程改革的主要任务。如何培养学生学会学习、学会探究呢?建构主义认为:“知识不是被动吸收的,而是由认知主体主动建构的。”这个观点从教学的角度来理解就是:知识不仅是通过教师传授得到的,更重要的是学生在一定的情境中,运用已有的学习经验,并通过与他人(在教师指导和学习伙伴的帮助下)协作,主动建构而获得的,建构主义教学模式强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。本节“正弦定理”的教学,将遵循这个原则而进行设计。

四、教学目标:

1、在创设的问题情境中,让学生从已有的几何知识和处理几何图形的常用方法出发,探索和证明正弦定理,体验坐标法将几何问题转化为代数问题的优越性,感受数学论证的严谨性.

2、理解三角形面积公式,能运用正弦定理解决三角形的两类基本问题,并初步认识用正弦定理解三角形时,会有一解、两解、无解三种情况。

3、通过对实际问题的探索,培养学生的数学应用意识,激发学生学习的兴趣,让学生感受到数学知识既来源于生活,又服务与生活。

五、教学重点与难点

教学重点:正弦定理的探索与证明;正弦定理的基本应用。

教学难点:正弦定理的探索与证明。

突破难点的手段:抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生

主体下给于适当的提示和指导。

六、复习引入:

1.在任意三角形行中有大边对大角,小边对小角的边角关系?是否可以把边、角关系准确量化?

2.在ABC中,角A、B、C的正弦对边分别是a,b,c,你能发现它们之间有什么关系吗?

结论:

证明:(向量法)过A作单位向量j垂直于AC,由AC+CB=AB边同乘以单位向量。

正弦定理:在一个三角形中,各边和它所对角的正弦的比相等。

《正弦定理》教学反思

本节是“正弦定理”定理的第一节,在备课中有两个问题需要精心设计.一个是问题的引入,一个是定理的证明.通过两个实际问题引入,让学生体会为什么要学习这节课,从学生的“最近发展区”入手进行设计,寻求解决问题的方法.具体的'思路就是从解决课本的实际问题入手展开,将问题一般化导出三角形中的边角关系——正弦定理.因此,做好“正弦定理”的教学既能复习巩固旧知识,也能让学生掌握新的有用的知识,有效提高学生解决问题的能力。

1.在教学过程中,我注重引导学生的思维发生,发展,让学生体会数学问题是如何解决的,给学生解决问题的一般思路。从学生熟悉的直角三角形边角关系,把锐角三角形和钝角三角形的问题也转化为直角三角形的性,从而得到解决,并渗透了分类讨论思想和数形结合思想等思想。

2.在教学中我恰当地利用多媒体技术,是突破教学难点的一个重要手段.利用《几何画板》探究比值的值,由动到静,取得了很好的效果,加深了学生的印象.

3.由于设计的内容比较的多,教学时间的超时,这说明我自己对学生情况的把握不够准确到位,致使教学过程中时间的分配不够适当,教学语言不够精简,今后我一定避免此类问题,争取更大的进步。

《正弦定理优秀教学设计.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式